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Letters
A new synthesis of key intermediates for the assembly of polycyclic
ethers: Yb(OTf)3-promoted formation of O,S-acetals from

a-fluorosulfides and alcohols
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Abstract—We report a new reaction for the direct construction of O,S-acetals, key intermediates in the assembly of fused polycyclic
ethers. a-Fluorosulfides and secondary alcohols were coupled by the action of Yb(OTf)3 to generate O,S-acetals in high yield. The
neutral and selective nature of the reaction should be useful for synthesizing natural and artificial polyethers with multisensitive
functionalities.
� 2004 Elsevier Ltd. All rights reserved.
With their imposing molecular structure, the ladder-
shaped polyethers pose considerable challenge to syn-
thetic chemists.1 Ciguatoxins have one of the most
complex structures among this class of natural prod-
ucts,2 and have attracted intense attention from the
chemical community.3 In 2001, we reported the first
total synthesis of ciguatoxin CTX3C2b (1, Fig. 1), which
was further improved in 2002 utilizing a new protective
group strategy.4

In our convergent synthesis of CTX3C, the most chal-
lenging coupling is the final one, whereby the left (AB-
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Figure 1. Structure of ciguatoxin CTX3C (1).
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CDE) and right (HIJKLM) ring systems are joined with
the simultaneous construction of the FG-ring. As sche-
matically shown in Scheme 1, this protocol used O,S-
acetal 8 as a key intermediate, from which the G ring
and the F ring were constructed through radical cycli-
zation5 and the ring-closing olefin metathesis reaction,6

respectively (8fi 9fi 10). The O,S-acetal 8 was pro-
duced by two Lewis acid-mediated reactions: acetaliza-
tion of the fragments 2 and 3, and subsequent
introduction of thiophenyl to 4.7

Very recently, we have developed a more direct method
to form O,S-acetal (Scheme 1). In this strategy, sulfide 6
is converted to a-chlorosulfide 7 using NCS, and then 7
is activated using AgOTf in the presence of secondary
alcohol 5 and base to form the O,S-acetal 8. This pro-
cedure is clearly advantageous for the synthesis of
complex substrates because of its neutral reaction con-
ditions, and has been successfully applied to the EFGH-
ring fragment of CTX3C8 and 6-X-7-6 ring systems of
various ring sizes (X¼ 7–9).9 In light of the importance
of the mixed acetal strategy for synthesizing polyether
structures, we have become interested in expanding
further its potential using alternative methods. This
paper reports the development of a new reaction to form
O,S-acetals from a-fluorosulfides.

We first targeted compound 15 (Table 1), which previ-
ously was synthesized from chlorosulfide 14, and which
can be converted to the EFGH-ring system 16 in 6
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Scheme 1. Schematic presentation of two coupling methods:

DTBMP¼ 2,6-tert-butyl-4-methylpyridine.
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synthetic steps.8 The new synthesis of 15 involved initial
fluorination of sulfide 12 by applying the conditions
developed by Robins.10 A reagent combination of
(diethylamino)sulfur trifluoride (DAST) and catalytic
SbCl3 in CH2Cl2 converted 12 to a-fluorosulfide 13 in
100% yield as a diastereomeric mixture (5:4). In sharp
Table 1. Yb(OTf)3-mediated coupling reaction of E-ring and H-ring
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E11

Yb(OTf)3 (2 equiv)
DTBMP (8 equiv)

MS4A

DAST (10 equiv), SbCl3 (0.1 equiv)
CH2Cl2, RT, 3 h, 100%

Entry Solvent Equiv of 11 Concentration of

13 (mM)

Tem

1 CH2Cl2 1.2 50 )30
2 CH3NO2 1.2 50 )30
3 THF 1.2 50 )80
4 DME 1.2 50 )70
5 DME 1.2 100 )60

7 THF 2.0 100 )80
aComplex mixture was obtained.
b Starting material 13 was isolated in 40% yield. Yield in parenthesis is base
contrast to the instability of the corresponding chloride
14, fluoride 13 was chemically stable and isolable in pure
form using silica gel chromatography.

After screening reagents and conditions, it was found
that Yb(OTf)3 effectively induced coupling of the stable
fluoride 13, even at low temperatures (Table 1).11;12 The
desired O,S-acetal 15 was produced by treating fluoride
13 with Yb(OTf)3 (2 equiv) in the presence of alcohol 11
(1.2 equiv), 2,6-di-tert-butyl-4-methylpyridine (DTBMP,
8 equiv) and molecular sieves 4A (MS4A). The yield and
time of reaction depended considerably on the solvent
(entries 1–4). The reaction in CH2Cl2 was sluggish and
low yielding for the practical purposes, but THF and
DME appear to be promising media. Although the
target product 15 was obtained, significant formation of
byproducts 17 and 18 was problematic. As illustrated in
Scheme 2, compounds 17 and 18 are considered to arise
from HF-elimination and from an intramolecular
hydride shift from the benzylic position, respectively,
upon fluoride activation of 13.

To accelerate the intermolecular reaction over the self-
consumption of 13, the reaction concentration of 13 was
doubled in DME (Table 1, entry 5), which provided an
improved yield of 15 with less byproducts. The best yield
of 15 was achieved (79%, a 5:1 diastereomer ratio,13

entry 6), when the amount of alcohol 11 was increased
to 2 equiv and the concentration of 13 was 100mM in
DME.

Having successfully established the new coupling pro-
cedure, we then targeted the acetal-protected sulfide 20
to investigate whether the method is suitable for acid
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perature Time (h) Yield (%)

15 17 18
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d on recovered 13.
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Scheme 2. Mechanistic rationale of formation of 17 and 18.
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sensitive functionalities (Scheme 3). Fluorination of 20
under the same conditions as 12 afforded 21 in only
64% yield, and the p-methoxybenzylidene removal was
observed. Interestingly, the use of THF as co-solvent
dramatically suppressed this acid-catalyzed side reaction
to provide 21 as a single isomer in 100% yield. a-Flu-
orosulfide 21 was then successfully coupled with alcohol
22 (2 equiv) by the action of Yb(OTf)3 in either DME or
TBSO
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Scheme 3. Yb(OTf)3-mediated coupling reaction of acetal-protected

substrate.
THF as solvent. A slightly better result was obtained
using THF, in which the adduct 23 was produced in 84%
yield (a 5:3 diastereomer ratio).14

In conclusion, we have devised the new reaction to
construct O,S-acetals, important intermediates for the
synthesis of polyethers. It is particularly noteworthy
that Yb(OTf)3 effected the activation of the stable
a-fluorosulfides at low temperatures. The mild, yet
powerful nature of the reaction is likely to enable effi-
cient synthesis of the gigantic natural and artificial
polyethers. Furthermore, O,S-acetals have been utilized
as acyclic glycosyl donors,15 thus the method presented
should be synthetically useful for the oligosaccharides.
Application of the newly developed method to complex
substrates such as ciguatoxins is currently under active
investigation.
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